
Declarative Flow Control for Distributed Instrumentation

B. Parvin, G. Fontenay, and J. Taylor D. Callahan
Computing Sciences Life sciences

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory
Berkeley, CA 94720 Berkeley, CA 94720

Abstract

We have developed a \microscopy channel" to ad-
vertise a unique set of on-line scienti�c instruments
and to let users join a particular session, perform an
experiment, collaborate with other users, and collect
data for further analysis. The channel is a collabora-
tive problem solving environment (CPSE) that allows
for both synchronous and asynchronous collaboration,
as well as ow control for enhanced scalability. The
ow control is a declarative feature that enhances soft-
ware functionality at the experimental scale.

Our testbed includes several unique electron and
optical microscopes with applications ranging from
material science to cell biology. We have built a sys-
tem that leverages current commercial CORBA ser-
vices, Web Servers, and ow control speci�cations to
meet diverse requirements for microscopy and experi-
mental protocols. In this context, we have de�ned and
enhanced Instrument Services (IS), Exchange Services
(ES), Computational Services (CS), and Declarative
Services (DS) that sit on top of CORBA and its en-
abling services (naming, trading, security, and noti�-
cation) IS provides a layer of abstraction for control-
ling any type of microscope. ES provides a common
set of utilities for information management and trans-
action. CS provides the analytical capabilities needed
for online microscopy. DS provides mechanisms for
ow control for improving the dynamic behavior of
the system.

1 Introduction

The current trend in telepresence research is to
bring experts and facilities together from geograph-
ically dispersed locations [3, 5, 10, 6]. The natural
evolution of this research is to couple declarative rep-
resentation with object oriented techniques for max-
imizing reusability and exibility, increasing abstrac-
tion, and reducing maintenance cost. A declarative
approach provides a semantic that is concise and deep.

�This research is supported by Director, O�ce of Science,
the O�ce of Biological and Environmental Research, and the
O�ce of Advanced Scienti�c Computing Research, Mathemat-
ical, Information, and Computational Sciences Division of the
U. S. Department of Energy under Contract No. DE-AC03-
76SF00098 with the University of California. The publication
number is LBNL-47408. E-mail: parvin@media.lbl.gov.

For example, rule based systems provide the basis for
dynamic interaction between the users and applica-
tions with an abstraction that is much like predicate
logic and more understandable than traditional ap-
proaches. In this context, the logic (the declarative
part) can be changed on demand, but the methods for
applying the logic to the state of the system remain
intact. In contrast, any change to the logic, in the
present framework, requires deep changes in the pro-
cedural code that are di�cult to maintain. Further-
more, di�erent scienti�c experiments require di�erent
sets of logic. Thus, the design must be extensible.

The design themes are functionality, scalability, and
performance. We are also interested in interactivity,
which is achieved through the best e�ort with most
commercialORBs or Web servers. Functionality refers
to what and how an instrument does something and
how well system resources can be managed and ac-
cessed. Scalability refers to the number of instru-
ments, vendor-speci�c desktop workstations, analysis
programs, and collaborators that can simultaneously
attach themselves to the system. Performance refers
to how well system resources are being utilized. Our
testbed includes several electron and optical micro-
scopes that are located at Berkeley Lab (LBNL), Oak
Ridge National Laboratory (ORNL), and the Univer-
sity of Illinois, with applications ranging from ma-
terial science to cell biology. Our system is named
DeepView, which has been installed at several institu-
tion. The interface to the microscopy channel and a
listing of various instruments are shown in Figure 1.
The channel is tightly coupled with the OMG-de�ned.
Naming and Trading services for binding and resource
discovery. From the user's perspective, we established
a set of desirable requirements in terms of functional-
ity, scalability, interactivity, safety, and security. From
the designer's perspective, we abstracted these re-
quirements into four categories of services: Instrument
services (IS), Exchange services (ES), Computational
services (CS), and Declarative services (DS). These
services sit on top of CORBA, OMG de�ned services,
and Web servers. IS provides a layer of abstraction for
controlling any type of microscope or simulation soft-
ware. Simulation aims at generating a representation
based on physical properties of a system and its rela-
tionship with respect to an observation mode. ES pro-



vides a common set of utilities for information man-
agement and transaction. CS provides the analytical
capabilities needed for online microscopy and problem
solving. DS provides ow control and required XML-
based features for improving the dynamic behavior of
the collaborative infrastructure.

Figure 1: User's view of the microscopy channel.

CS o�ers an extensible array of tools for visual-
ization, model recovery, and comparative analysis of
observed and simulated data. Model recovery is an
inverse problem-solving process that attempts to (a)
link a specimen's behavior to external stimulation
through feature extraction, archival, and data min-
ing or (b) construct a 3D geometric model of an object
through user interaction. In general, model recovery is
a computation-intensive algorithmic process requiring
the extensive support of high-performance computing
and low-latency network infrastructure.

The next section of the paper summarizes recent re-
lated work in collaboratory computing. Section 3 de-
scribes software architecture, ongoing scienti�c exper-
iments and their corresponding computational needs.
Section 4 concludes the paper.

2 Related Work

Previous systems fall under two categories: telep-
resence [3, 5, 7] and collaborative frameworks [6].
Telepresence research has focused on remote function-
ality of the instrument and the necessary automation
for large scale data collection and analysis. In general,
these systems ignore many of the scalability issues that
we have been advocating [6]. With respect to the col-
laborative framework, a taxonomy of existing systems
is given below.

� UC Berkeley's MASH project [4] uses MBone
tools in a heterogeneous environment to develop
scalable multimedia architecture for collaborative
applications in fully distributed systems.

� NCSA's Habanero project provides smooth man-
agement and simultaneous distribution of shared

information to all clients in a component-based,
centralized system written primarily in Java.

� Rutgers University's DISCIPLE uses a CORBA
framework for distributed access in a service-
based, centralized system for enforcing shared vir-
tual space.

� Sun Microsystem's Java Shared Development tool
kit enables collaborative-aware Java code to send
data to participants within a communication ses-
sion. It supports three types of transport proto-
cols: TCP/IP socket, light-weight reliable mul-
ticast, and remote invocation method. In this
framework, all objects are manageable and col-
laboration occurs within a session that includes
channel, token, blobs, and listener.

� The University of Michigan's Upper Atmosphere
Research Collaboratory (UARC) is a web-based
distributed system (written mostly in Java) that
collects data from over 40 observational plat-
forms for space physics research for both syn-
chronous and asynchronous collaboration. In this
system, data suppliers publish their data on a
data-dissemination server. Clients then subscribe
to receive the desired information.

Our approach combines service-based distributed
architecture with the declarative framework to maxi-
mize the use of commercial middleware and emerging
new technologies. This is based on an OMG-de�ned
CORBA framework [with an Internet Inter-ORB Pro-
tocol (IIOP)], Web Servers, and emerging XML-based
speci�cations. CORBA provides virtual distributed
containers for objects. These objects can then be im-
plemented in any language; e.g., Java, C++. Fur-
thermore, OMG has de�ned a number of enabling
technologies for decoupled communication, object lo-
calization and resource discovery, and security. The
main advantages of using CORBA are that (a) it is
not restricted to the Java language, (b) it is available
on multiple platforms, (c) it supports a rich class of
enabling services, and (d) it supports real-time appli-
cations [8] under a newly adopted standard.

2.1 Flow control

Over the last 8 years, several work ow models
have been proposed through various working group.
The intent is to de�ne an abstract peer-to-peer col-
laboration that can operate across the Internet. The
�rst such speci�cation by the Workow Management
Coalition (WfMC), de�ned a set of state model rep-
resenting a process in terms of running, terminating,
and completion. The standard de�nes the contents of
requests and responses that are extensible and lever-
ages well-known concepts such as property objects or
java beans. WfMC was later used by OMG to de�ne
a framework for distributed workow management.



The framework de�nes object models for workow re-
quests, a registry, workow process management, and
workow activities. The simple workow access pro-
tocol (SWAP) and Wf-XML are the evolution of the
OMG initiative. SWAP uses http protocol that ren-
ders interaction between workow applications. The
lesson learned from SWAP led to a Wf-XML speci-
�cation with new features such as synchronous and
asynchronous interactions, data typing, and timing.
Our system uses a Wf-XML to specify the workow
model in a distributed environment. Wf-XML is the
only speci�cation that meets the science requirements
for annotating time series data with synchronous and
asynchronous control.

3 Software Architecture

Our system uses an extensible object-oriented
framework so that applications can be rapidly assem-
bled, maintained, and reused. These objects may re-
side on any host and can be listed, queried, and ac-
tivated in the system. The architecture illustrated in
Figure 2 bridges the gaps between di�erent services
that may reside at any node in a distributed system.

Our system consists of three service categories that
interact with the ORB, Adaptive Communication En-
vironment (ACE), and Web servers: Instrument Ser-
vices (IS), Exchange Services (ES), and Computa-
tional Services (CS). A brief review of Enabling Ser-
vices is provided in this section.

Figure 2: Architecture of DeepView

3.1 Enabling Services

Enabling services include OMG de�ned services
(Naming, Trading, Security, and Noti�cation) as well
as Web based technologies such as Web Servers and
JSP. The Naming Service binds a name to an object
and allows that object to be found subsequently. It

behaves much like the \White Pages." The names are
resolved within a naming context that is organized as
a graph. The naming context is an object that stores
name binding for objects, and it is essentially a table.
The Trading Service provides facilities for dynamic ob-
ject discovery. The trader stores a description of the
service along with object reference, and behaves much
like the \Yellow Pages." It provides an advertisement
service, policies, and a matching engine through an
OMG-de�ned constraint language. The constraint is a
boolean expression that is somewhat similar to an SQL
interface. The constraint language provides boolean,
arithmetic, and comparison operations to locate a par-
ticular object or resource based on its properties. The
requirement for resource management and brokering
has been well documented [1] through the use of either
LDAP or relational databases. The CORBA Nam-
ing and Trading Services are an alternative approach
that is reliable (for writing), and well supported by
the commercial vendors. While the Naming Service is
hierarchical (much like a UNIX �le system), the Trad-
ing Service is at. The Security Service is based on
the secure socket layer (SSL), which provides authen-
tication, privacy, and integrity for TCP-based connec-
tions. SSL uses RSA public key encryptography for
authentication, where each application has an associ-
ated public key and an associated private key. In this
context, data encrypted with the public key can only
be decrypted with the private key, and data encrypted
with the private key can only be decrypted with the
public key. The Noti�cation Service is a replacement
for Event Services. Several communication models are
supported by CORBA:

� The �rst model is based on the standard CORBA
invocation model of two-way, one-way, and de-
ferred synchronous interaction. Although this
model simpli�es distributed processing, it lacks
asynchronous message delivery and does not sup-
port group communication, which can lead to ex-
cessive polling.

� The second model uses COS Event Services that
provide decoupled communication between sup-
pliers and consumers. The key concept in this
service is the event channel, which can assume a
variety of design patterns depending on the model
of collaboration among di�erent components [9].
The roles that the event channel can play include
(a) a noti�er for the push/push model, (b) a pro-
curer for the pull/pull model, (c) a queue for the
hybrid push/pull model, and (d) an intelligent
agent for the hybrid pull/push model. Presently,
only the push/push model with typed and un-
typed events is supported. This service allows
clients to register with events of interest and �lter
incoming events. A unique feature of the Noti�-
cation Service is that it supports quality of ser-
vice (QoS) and various policies to enforce it. The



underlying transport protocol can be either TCP
or reliable multicast. Reliable multicast is sup-
ported by OrbixTalk, which provides assembly,
sequencing, and ordering of IP multicast packets
for enhanced network utilization.

In our system, all synchronous communications (for
collaboration) are performed through the event chan-
nel, and all asynchronous operations are conducted
with CORBA two-way and one-way communication.
The Naming and Trading Services are used for object
localization and its required resources. The Naming
Service is organized as a hierarchical tree structure
for modular organization of objects. These services
are federated, with each physical site maintaining its
own catalog of information. However, this view is hid-
den from clients. The key advantages of a federated
organization are (a) improved reliability (when a sin-
gle server becomes inaccessible), (b) improved perfor-
mance (where di�erent servers can work in parallel),
(c) improved scalability (where persistent information
is distributed on multiple hosts), and (d) improved
administration boundaries. Naming and Trading Ser-
vices are a powerful mechanism for resource discovery,
brokering, and subsequent load balancing.

The SSL handshake is initiated by a client sending a
message to the server. The server responds by sending
its X.509 certi�cate. The client extracts the public key
from the certi�cate and encrypts a session key. The
server uses its private key to decrypt the session key
and application data. Additionally, the server requests
the client certi�cate to resume a previously established
handshake.
3.2 Instrument Services

The key to rapid integration of any instrument into
the system is declarative annotation of instrument
control and detectors. An instrument is partitioned
into devices, each of which may have a number of
properties. A DTD description was developed, and the
corresponding XML information has been constructed
and stored for each instrument. The devices and prop-
erties can then be queried through a Web interface.
During initialization, the servers access the persistent
storage to con�gure themselves for a particular instru-
ment. In this context, Instrument Services provide a
scalable means of collaborative instrument control and
interaction through three objects: instrument, instru-
ment factory, and an abstract action class. See Figure
3. An instrument consists of a set of devices (e.g.,
controller, detectors) that are advertised through the
Naming Service. Each device has a list of properties.
For example, the controller may include focus, shift,
and tilt properties. These properties and their corre-
sponding attributes can be queried and manipulated
through instances of instrument and action objects.
An action consists of three simple interfaces: get, set,
and cando.

All actions occur within a managed session. When
a client instantiates an action, it passes an object that

uniquely identi�es itself. By associating a particular
user with each action, the server may queue and/or
prioritize the processing of its services in the collab-
orative environment. The design of IS is partially
inuenced by the Object Property Service (OPS) as
de�ned by OMG. OPS provides a mechanism to as-
sociate objects with typed name-value pairs. These
objects can then be manipulated through set and get
methods. In an instrument, the value of a control
parameter can change either by natural drifts in the
system or when it is set to a new value by a princi-
pal client. The design of the server is multi-threaded.
One thread autonomously scans the property values
(of each device) every n seconds. The second thread
simply changes the value of a property through a set
operation. In both cases, any changes in the state
of the system are recorded and then broadcast to all
clients. This design is scalable, since properties and
their corresponding attributes are stored in a per-
sistent con�guration �le. In other words, addition
of new instruments will not require any changes to
the CORBA IDL representation, and thus no changes
will be needed to the clients (with the exception of
instrument-speci�c changes to the GUI). Each new in-
strument needs to de�ne a \plug-in" for the proposed
architecture. Another utility of IS is its use as a front
end to a simulation engine or modeling system. In this
context, a physical instrument and a simulation engine
behave similarly. They both have control parameters,
and they both generate blobs of data.

Figure 3: Relationship of key objects for Blob Man-
ager and Instrument Manager. Each additional instru-
ment requires a plug in for ControlSource and Blob-
Source. The details of ControlSource and BlobSource
are hidden at the IDL level.

3.3 Exchange Services

Exchange Services provide a set of objects for infor-
mation exchange between collaborators, instruments,



and application programs. This set consists of:

� The session manager (SessionMgr) object, which
provides a listing of active users and a policy for
sharing an instrument among multiple collabora-
tors. This policy empowers the current \princi-
pal" to pass the control to another user. The
instrument has a local operator who can override
current the principal by assigning the instrument
to a third party. Each time a new user joins the
system, his or her presence is broadcast to all the
other clients. Likewise, when the user leaves, he
or she is removed from the list of active clients.

� The blob manager (BlobMgr) object, which pro-
vides an e�cient means of transferring bulk data
between various objects. It uses the same IDL
that is used by IS, but it is extended to handle
blob data. On the server side, the detailed imple-
mentation of BlobMgr has a three stage pipeline
for high throughput. The pipeline architecture
has shown a throughput of 15 frames/sec for com-
pressed data over the wide area network. Further-
more, the recent implementation of ORBs from
Iona and TAO has shown zero memory copy with
similar performance to the UNIX socket over the
high-speed network. As a result, all the bulk data
transfer is implemented as a sequence data type.
The server side of the blob manager is designed
in such a way that the number of blob objects
(detectors) are hidden from the IDL. As a re-
sult, each time a new detector (blob generator) is
added to the system, no changes to the IDL are
made. A client can query various blob sources
in the system and register to receive data from a
speci�c detector. The blob object is managed by
the session manager.

� The shared space manager, which provides the
necessary services for clients to exchange chat
messages, graphics overlays, and images among
multiple collaborators. Message sharing can be
private or public. Public messages are broadcast
to all collaborators, while private messages are
sent to a subset of collaborators. This compo-
nent is tightly coupled to the session manager for
private messages.

3.4 Declarative Services
Declarative services refer to zero-th or higher order

forms of representing information about a particular
experience. This representation is generated by a user.
Such a framework needs to incorporate several types
of declarative notions. Our present focus has been on
ow control, which is modeled after Wf-XML speci-
�cation. The workow engine provides interoperable
functions in terms of operations. Each operation may
pass a set of request parameters and return a set of
response parameters. Operations are divided into dif-
ferent groups so that they can be identi�ed by their

context. There are three primary groups of operations,
which are named ProcessInstance, ProcessDe�nition,
and Observer. The ProcessDe�nition is a factory for
creating an instance of a service, which can be refer-
enced by interoperable services. The ProcessInstance
corresponds to the actual invocation of ProcessDe�ni-
tion and maintains its own identi�er. The Observer is
essentially a noti�er pattern that informs other oper-
ations of any state changes. The interaction of these
operations is shown in Figure 4.

Figure 4: Interaction of operations in Wf-XML.

In our system, collaborators communicate with
servers through OrbixWeb (a Java version of Iona's
ORB), where remote GUI objects are implemented as
Java beans. In theory, Java provides scalability on dif-
ferent types of desktops. However, some modi�cation
is needed for porting the GUI across multiple plat-
forms. The GUI component aims to provide needed
functionality for a particular type of experiment. A
fairly detailed abstraction exists for in-situ and high-
resolution microscopy. It also provides a log-book
where the state of the instrument can be traversed
to a previously known state. The GUI manager has
two components: a generic interface for common in-
strument control, and a set of specialized components
that are instrument speci�c.

The Java client is based on the model view con-
troller (MVC) pattern. The implementation uses the
Java event model. The model provides a proxy for a
remote data source, and provides three kinds of in-
terfaces: command, data, and noti�cation. The com-
mand interface is for requesting changes to the model's
data. The data interface is for requesting the model's
data. The noti�cation interface is for notifying listen-
ers about changes in the model's data as a result of
external events. The key models (event sources) in the
DeepView client are BlobSource, ControlSource, Mes-
sageSource, and SessionSource. Each of these sources
can generate user-de�ned events. The view compo-
nents receive input from the user and forward it to an
appropriate controller. It displays data to the user by
requesting it from a model. additionally, the view re-
ceives noti�cation from the model. The basic views



in the system are BlobCanvas, Device and Proper-
tyTable, and SessionPanel. The controller de�nes the
relationship between input from the view and the ac-
tion made against the model. It follows an observer
pattern. The controllers use the three interfaces pro-
vided by the model to maintain a consistent view. The
controllers are BlobPlayer, Instrument Manager, and
Session Manager.

Figure 5 shows a speci�c GUI that is designed for
a scanning electron microscope at the Oak Ridge Na-
tional Laboratory. The output of the blob manager,
session manager, shared space manager, and the in-
strument manager are presented to the end user. Fig-
ure 6 shows the interaction between clients and various
services through the event channel. At the instrument
site, there are three channels for Instrument State,
Blob Manager, and Session Manager. The Blob Man-
ager samples the output of the detector periodically
and pushes a compressed image to the event chan-
nel. This is the most active channel, and it has been
implemented with a three stage pipeline architecture.
The other two channels simply notify the client appli-
cation of any changes. This design is service based,
decoupled, and distributed. The behavior of the event
channel indicates that it broadcasts data at the rate
of the client with the least amount of network band-
width. Thus, to avoid penalizing clients with high
network bandwidth, the system maintains a pool of
event channels for the Blob Manager. Each channel
has a di�erent updating frequency, and its characteris-
tic is registered with the Trading Service. The clients
then measure their bandwidth and connect themselves
to an appropriate channel with matching impedance.
With the exception of event channels corresponding to
the BlobMgr, all other event channels run in a secure
mode.

3.5 System Views

DeepView maintains three views of the system: the
naming view, content view, and meta view. Naming
view leverages the vendor-supported GUI for adver-
tising object references and their corresponding hier-
archy. Content view shows the current state of the
instrument in terms of devices and their associated
properties in the instrument control panel. Meta view
uses XML to represent the relationship between de-
vices, properties, and their attributes. This view is
used to annotate actions performed on the instrument
and for logging information into the archival system.

3.6 Computational Services

A number of computational components have been
integrated to enhance instrument operation and sci-
ence experiments through high performance comput-
ing [5, 2]. Two new computational features are in-
cluded in this paper that address issues in material
science as well as cell biology.

Figure 5: Collaborative view of the DeepView shows
the shared view space, which includes image, session
manager, and a listing of devices and properties at
the instrument site. Changes in the properties are
recorded and broadcast to all clients.

EVENT
CHANNEL

EVENT
CHANNEL

BLOB
MANAGER

SESSION
MANAGER

INSTRUMENT
STATE

SHARED
SPACE
EVENT

CHANNEL

EVENT
CHANNEL

PUSH SUPPLIERPUSH CONSUMER

EVENT
CHANNEL

EVENT
CHANNEL

EVENT
CHANNEL

TRADING
SERVICE

CLIENT 1

CLIENT n

Figure 6: Interaction between producers and con-
sumers through event channels. Each consumer
measures its available bandwidth and connects it-
self to a blob manager event channel with matching
impedance. The data rate for session manager and
instrument manager is low and no impedance match-
ing is needed. The underlying transport for the event
channel can be either TCP or reliable multicast.



3.6.1 Stereo reconstruction

From a functional perspective, it is often di�cult to
examine 3D structural details that may be present on
a specimen holder when observed with scanning elec-
tron microscope. We have developed an algorithm to
view three dimensional structures by tilting the spec-
imen. The details of this approach are beyond the
scope of this paper; however, the workow model for
this operation is included below as well as an example
of 3D reconstruction (in Figure 8).

Figure 7: Process invocation by the client side of work-
ow control for stereo reconstruction. A workow ob-
server model runs on the remote server for reconstruc-
tion.

3.6.2 Kinetic uptake and retention factors at
cellular level

An inverted optical microscope has been used to study
the kinetics of uptake and retention in living cells. In
this case, particular compounds of interest are injected
into the cell environment under computer control. Our
system can be programmed with user de�ned recipes
that indicate concentration of various compounds (at
di�erent time points) being injected into the cell en-
vironment, sampling rate for collection of images, and
various imaging parameters. The system uses a work-
ow model to capture images periodically, segment-
ing those images, measuring cellular responses for a
�eld of several hundred cells, and logging those re-
sponses into an archival system. These responses allow
direct measurements of kinetic uptake and retention
factors for each cell line for subsequent comparison.
The archival system can then be browsed and queried
through a Web based interface. Examples of brows-
ing raw data, segmentation results, and corresponding
metadata (computed responses over a 2.5-hour period)
are shown in Figures 9, 10, and 11.

(a) (b)

Figure 8: Stereo Reconstruction: (a) one of the two
views used for stereo reconstruction shows no appar-
ent depth cue; (b) the 3D map shows depth cues for
di�erent pieces of specimen.

Figure 9: Tree structure representation of raw data
and viewing of a particular image.



Figure 10: Segmentation results for a �eld of nuclei
selected from Figure 9. This is an active page, where
the user can click on a speci�c nucleus and observe its
response over the entire experimental cycle (approxi-
mately 2.5 hours).

Figure 11: Response of an individual nucleus as a func-
tion of time as various compounds are injected into the
cell chamber at di�erent time points.

4 Conclusion

A channel for distributed microscopy has been im-
plemented to meet the requirement for synchronous
and asynchronous collaboration. We have leveraged
OMG-de�ned services, Web servers, and XML based
workow speci�cations to construct four additional
services for instrument control, collaborative manage-
ment, and analytical capability. Our approach aims
to leverage common o�-the-shelf middleware software
to exploit economies of scale. However, a key design
feature of our system has been scalability. We view
scalability not only as extensible software interfaces,
but also in how experimental parameters can be var-
ied through declarative workow models. We have
applied our design to problems in material science as
well as in cell biology.

References
[1] C. Baru, R. Frost, R. Marciano, R. Moore, A. Rajasekar,

and M. Wan. Metadata to support information-based com-
puting environment. In IEEE Conference on Meta Data
Computing, 1997.

[2] G. Cong and B. Parvin. Shape recovery from eqaul thick-
ness contours. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22:1055{1061, 2000.

[3] M. Hadida-Hassan and et al. Web-based telemicroscopy.
Journal of Structural Biology, 125:229{234, 1999.

[4] S. McCanne. Scalable multimedia communication using ip
multicast and lightweight sessions. IEEE Internet Com-
puting, 3:33{44, 1999.

[5] B. Parvin, J. Taylor, D. Callahan, W. Johnston, and
U. Dahmen. Visual servoing for on-line facilities. IEEE
Computer Magazine, 1997.

[6] B. Parvin, J. Taylor, and G. Cong. A collaborative frame-
work for distributed microscopy. In IEEE Conf. on Super
Computing, 1998.

[7] C. Potter and et al. Leginon: A system for fully automated
acquisition of 1000 electron micrographs a day. UltraMi-
croscopy, 77:153{161, 1999.

[8] D. Schmidt, D. Levin, and S. Mungee. The design of the
tao real-time object request broker. Computer Communi-
cations, 21, 1998.

[9] D. Schmidt and S. Vinoski. Object interconections{the
OMG event services. SIGS C++ Report, 1997.

[10] Young S.J. and etal. Implementingcollaboratoryfor micro-
scopic digital anatomy. Int. Journal of Supercomputer Ap-
plications and High Performance Computing, pages 170{
181, 1996.


